
Indoor Proximity-based Advertising using Bluetooth Beacons
Finn Zhan Chen

School of Informatics, University of Edinburgh
Edinburgh, United Kingdom
finnzhanchen@gmail.com

ABSTRACT
Bluetooth is a perfect alternative technology for indoor localisation
and is highly accurate, cost-effective, can be installed with minimal
effort, and supported by many operating systems and devices. In-
door localisation proposes an immense value proposition to retails
stores. In this paper, an indoor localisation prototype is built based
on Bluetooth beacons’ signals. The accuracy of the prototype is
evaluated to determine its possible real-world applications, such as
location-based advertisements in a shopping mall or supermarket
environment.

1 INTRODUCTION
This paper focuses on the full-stack implementation of an indoor
localisation prototype entirely based on Bluetooth signals that can
estimate the location of an Internet of Things (IoT) device within
an indoor environment. Firmware in the IoT device was developed
to scan the Bluetooth signals continuously from a selected set of
Bluetooth beacons. An Android app is developed to subscribe to
the IoT device via Bluetooth and it acts as the gateway between
the IoT device and the Cloud [14]. Data received on the gateway
are decoded and are sent to the Cloud alongside with a timestamp
via WiFi. The Cloud contains a storage of collected data, computed
data, data processing scripts and Cloud visualisation dashboard.
Localisation scripts are developed to estimate the location of the
IoT device given the collected data and results are saved in the
Cloud. A real-time visualisation tool was developed for Android.
Furthermore, a Cloud visualisation dashboard was developed to
visualise the localisation results. Tests were designed and used
to evaluate the performance of the indoor localisation prototype,
and based on the performance obtained, business use cases for the
prototype are discussed.

2 DATA COLLECTION AND CLOUD STORAGE
The prototype environment (Appleton Tower Level 5, School of
Informatics, University of Edinburgh) has been pre-populated with
10 non-uniformly distributed Bluetooth beacons shown in Figure 1.

In this prototype, the only data used to estimate the indoor
location of the IoT device is the MAC address and Received Signal
Strength Indicator (RSSI) of the Bluetooth beacons.

Firmware in the IoT device was developed to collect MAC address
and RSSI of lab Bluetooth beacons. An Android app was developed
to subscribe to the IoT device and receive notifications about value
updates via Bluetooth. The phone running the Android app acts
as a gateway (a network node that connects two networks using
different protocols together) and posts the data to the Cloud [14]
via WiFi.

2.1 Firmware
Firmware for an IoT device, Nordic nRF51, was developed in MBED
OS using C++ to scan RSSI and MAC address of lab beacons and up-
date the subscribed Bluetooth device (the phone) via notifications.

Examples [8] [9] were used to familiarise with Bluetooth adver-
tisement callbacks, the Generic Attribute Profile (GATT) server
and setting up custom services and characteristics. GATT estab-
lishes in detail how to exchange all profile and user data over a BLE
connection [13].

2.1.1 Custom Services and Characteristics. GATT services are
collections of characteristics and relationships to other services that
encapsulate the behaviour of part of a device. GATT characteristics
are defined attribute types that contain a single logical value [13].
A custom service and a custom characteristic have been set up.

The custom characteristic contains an array of size 7. Each el-
ement is an unsigned integer of length 1 byte. MAC address is
saved in the first 6 bytes and RSSI value is saved at the last byte.
Combining both data into one characteristic is more efficient as the
IoT device only needs to update one characteristic rather than two
characteristics.

The custom characteristic has the property of "Notify" [6] so
it permits notifications of a characteristic value without acknowl-
edgment from a subscribed device (in this case, the Android app
gateway). "Notify" is preferred over property "Indicate" because
notifications enable a higher transfer rate.

2.1.2 Bluetooth Scanning. The IoT device continuously scans
for Bluetooth devices nearby and the received advertisements are
filtered by the installed lab beacon MAC addresses. Continuous
scanning ensures more data points are collected for the localisation
algorithm in section 4. This is achieved by setting the scan window
and scan interval to the same value. More data points result in more
accurate localisation.

Figure 1: Lab beacons on the floor plan



For every lab beacon advertisement received, the custom charac-
teristic is updated to the received lab beacon’s MAC address and
received RSSI, and the subscribed Bluetooth device is notified.

Due to the inconsistent signals of lab beacons and interference,
some beacons are harder to detect even if the IoT device is close
to the beacon. This causes fewer data points for the localisation
algorithm to provide an accurate location estimation. In response
to the latter, the data time window for which the RSSIs are used
for the localisation algorithm is increased to minimise the effect.
This is an external challenge and cannot be controlled during the
development of the prototype.

2.1.3 Additional Sensors. Additional sensors could be added to
the IoT device to provide more accurate localisation. However, due
working alone the author decided to finish the full-stack implemen-
tation first.

2.2 Gateway Communication
2.2.1 Android App as a Gateway. An Android App has been

developed using the template from [3] to subscribe to a Bluetooth
device. Then, this template is further customised by the author
and acts as a gateway between the IoT device and the Cloud. The
app is subscribed to the custom characteristic of the IoT device
and is notified of every new value update. For every notification
from the IoT device, the app creates a timestamp and decodes the
received MAC address and RSSI into strings. These three key-value
pairs are posted to the Cloud via REST API with the appropriate
authorisation headers [2].

2.2.2 AES-128 Encryption. Security measures have been consid-
ered to avoid data breach. Symmetric encryption algorithm such as
Advanced Encryption Standard (AES) 128 bits [7] could be imple-
mented for the prototype. AES-128 is less computationally intensive
than AES-192 and AES-256 so it would be preferred for a battery
sensitive application such as indoor localisation.

There are 2 stages where encryption could be used: the commu-
nication between the IoT device and the gateway, and the commu-
nication between the gateway and the Cloud. The former would
be impractical if the battery life of the IoT device is a big factor
as encryption is computationally heavy and reduces battery life.
On the other hand, the latter is a suitable scenario for applying
encryption.

At the gateway, a private key could be used to encrypt the times-
tamp, received MAC address and RSSI, and then post these to the
Cloud via REST API. When the encrypted data needs to be used,
the data on the Cloud can be decrypted using the same private
key during the execution of a script and be used for estimating the
location of the device.

Unfortunately, due to working alone and time constraint, en-
cryption was not implemented in the prototype, but this is a crucial
feature for future work.

2.3 Cloud Storage
The Cloud is used to store, visualise and process data. The Cloud
contains:

(1) Collection of collected data: Save data (timestamp, MAC
address, and RSSI) from the gateway, and are input for the
localisation algorithm.

(2) Collection of estimated locations: Save output (timestamp,
latitude, and longitude) from the localisation algorithm.

(3) Cloud visualisation dashboard: Visualisation of the estimated
locations.

(4) Real-time localisation Python script: Computes the latest lo-
cation given the collected RSSIs in the past y seconds where y
is the data time window. All beacons in the data time window
are considered "discovered beacons" and their proximities
are outputted.

(5) Batch processing Python script for localisation: Run the lo-
calisation algorithm every x seconds for the RSSIs collected
in the past y seconds at the time of the localisation algorithm
where x is the algorithm time interval and y is the data time
window. Results are saved in the collection of estimated
locations.

Collected data are accessed by both Python scripts for localisa-
tion. When the Cloud visualisation dashboard is accessed, the batch
processing script is called. Then, the Cloud dashboard retrieves the
collection of estimated locations and visualise them. The real-time
localisation script is called by a real-time visualisation Android app,
and Android app visualise the latest estimated location and the
discovered beacons’ proximity.

3 THE LOCALISATION ALGORITHM
Localisation is the estimation of latitude and longitude of the IoT
device. Two Python scripts have been developed to localise the
IoT device by using the MAC addresses and RSSIs from the data
collection.

Algorithm time interval is the time interval between each con-
secutive run of the localisation algorithm.

Data time window is the past time window in which the collected
data are used for localisation. The higher the data time window,
the more data points are available. Note that a higher data time
window does not necessarily result in higher accuracy. This is
used to discover beacons and their past RSSIs within the data time
window to compute their proximity to the IoT device.

The real-time localisation script finds the newest position of
the IoT device using the collected data in the data time window at
the time of localisation. Also, all discovered beacons’ proximity to
the IoT device are outputted. This is used for real-time localisation
visualisation in section 4.1 and manual RSSI calibration in section
3.1.2.

The other is a batch processing script that computes the path
by running the localisation script iteratively for every predefined
algorithm time interval on the entire collection of timestamps, RSSIs
and MAC addresses given a data time window. Each successful
localisation is posted to the Cloud.

The localisation is achieved using the lateration method which is
based on knowledge of reference point positions and the distances
to them [15].

2



3.1 Proximity to beacons
Proximity to beacon is crucial for the localisation algorithm and can
be found using the distance estimation model proposed by Texas
Instruments [4]:

RSSI = − (10 × n) log10 d +A (1)

In Equation 1, RSSI is the radio signal strength indicator in dBm,
n is the signal propagation exponent, d is the proximity to beacon,
and A is a reference RSSI (the RSSI value measured when the IoT
device is 1 metre away from the beacon). In free space, n is equal
to 2.

3.1.1 Finding reference RSSI. The reference RSSI (A) from Equa-
tion 1 have been calculated by collecting over 50 RSSIs at roughly
1 metre from each beacon. The noises from the collected RSSIs has
been filtered by removing the outliers using [5], and the remaining
RSSIs are averaged to find the reference RSSI.

However, the proximity distance calculated is not accurate. An
Android App from section 4.1 was been developed to visualise the
proximity calculated from the equation in real time. The problem
was that the reference RSSI value was too large, thus requiring
calibration.

3.1.2 Manually Calibrating reference RSSI. Manual adjustments
to the reference RSSI were made based on the visualisation of
the calculated proximity on the Android App from section 4.1.
The calculated proximity is visualised on the app as shown in
Figure 2 and is compared to the desired proximity. The desired
proximity is the distance between the IoT device location on themap
and the target beacon which could be estimated using Haversine
method [12] by inputting the ground truth location of the beacon
and location of the point using [11].

The reference RSSI is adjusted manually such that the difference
between the calculated proximity and the desired proximity is
minimal. However, a manual adjustment will not result in a global
minimum thus an improvement to this process would be to apply
an optimisation algorithm. However, due to time constraint and
working alone, this was not feasible.

Note that during this manual adjustment, the points are chosen
on the map such that there is minimal interference to the target
beacon. Manually calibration has been rigorous and tedious. This

Figure 2: Visualisation of a beacon’s calculated proximity
and desired proximity to the IoT device

was by far the most time-consuming and crucial part to ensure an
accurate location estimation from RSSI values.

The final reference RSSI value used in the localisation algorithm
is displayed in Table 1. The large difference between the reference
RSSI before and after manual calibration might be due to the fact
that the beacons are not on the same level of height as the IoT
device and human errors thus resulting wrong RSSI value estimate
at 1 metre in section 3.1.1.

3.1.3 Calculating proximity. Equation 1 can be rearranged into:

d = 10
A−RSSI

10×2 (2)

RSSI from Equation 2 is the average of the past RSSIs collected
from the same beacon within the data time window. Noises from
the RSSIs are reduced by removing the outliers using [5]. However,
a better and more complex noise removal model such as Kalman
filter [1] could be used. However, due time constraint and working
alone, the author decided to finish the full-stack implementation
first.

3.2 The Algorithm
The lateration algorithm calculates the estimated location of the
IoT device given the exact location of beacons and beacons’ prox-
imity to IoT device. Each beacon has a circle with radius equals to
its proximity to the IoT device. The lateration makes uses of the
intersecting points of the circles to interpolate the location.

3.2.1 3-Dimensional Trilateration. Trilateration [10] has been a
popular method to interpolate locations. An existing Python library
for trilateration was found [16]. The 3-dimensional space version
of this trilateration package (based geographic coordinate system:
latitude and longitude) was experimented.

The limitation of this 3D trilateration was that it requires:

(1) exactly 3 beacons, no more or less. This causes localisation
to fail in the scenario in Figure 3.

(2) their circles (the proximity to IoT device) must have mutual
intersecting points. This causes localisation to fail in the
scenario in Figure 4.

Table 1: Reference RSSI (in dBm) before and after manual
calibration.

Beacon MAC address RSSI at 1 metre After manual calibration

ED23C0D875CD -97.25 -84
E7311A8EB6D7 -95.97 -80
C7BC919B2D17 -66.78 -56.5
EC75A5ED8851 -90.24 -83
FE12DEF2C943 -89.56 -84.5
C03B5CFA00B8 -53.18 -50
E0B83A2F802A -99.89 -86
F15576CB0CF8 -96.00 -89
F17FB178EA3D -88.39 -85
FD8185988862 -95.03 -85

3



Figure 3: 2 circles with intersecting points.

Figure 4: 3 circles with no mutual intersecting point

In the prototype, the number discovered beacons in the data time
window vary greatly from 1 to 6 which makes the 3D trilateration
impractical in interpolating the IoT device’s position.

If there are more than 3 beacons, a solution to requirement 1
would be to apply a filtering criterion to choose exactly 3 beacons
out of all the discovered beacons. The experimental criterion was to
find 3 beacons with the closest proximity to IoT device, but this was
proven impractical in the real-time Android app visualisation. Re-
quirement 1 limits the number of beacons used in localisation which
limits accuracy. Requirement 2 causes localisation to fail because
the proximity to IoT device is often shorter than the true value, and
thus no mutual intersecting points. Therefore, an alternative was
pursued.

3.2.2 2-Dimensional Trilateration. The 2-dimensional space tri-
lateration (based on cartesian coordinate) from the same package
[16] was experimented. A Cartesian coordinate system is required
for this implementation so the beacons’ geographic coordinates
have been converted into Universal Transverse Mercator (UTM)
coordinates whose unit is in metre. This 2D version has a main
advantage over the 3D version. The algorithm works when there
are 2 or more beacons because it assumes the center of all mutual
intersecting points is the estimated location, and therefore it can
successfully estimate location in the scenario in Figure 3. The es-
timated position is converted back into latitude and longitude to

Figure 5: 4 circles with mutual intersecting points and nor-
mal intersecting points.

be saved on the Cloud and could be visualised on the Android app
and the Cloud dashboard in section 4.

Similar to 3D trilateration, a weakness of this algorithm is that it
requires mutual intersection points from all beacons’ circle. There-
fore, this algorithm fails to estimate location in the scenario in
Figure 4

3.2.3 Generalised 2-Dimensional Lateration. A sensible solution
would be to find the center of all intersecting points, and not ex-
clusively mutual intersecting points. Therefore, the code in the 2D
trilateration has been heavily modified by the author to suit the
prototype’s needs. As a result, the scenario shown in Figure 3 and
Figure 4 the localisation algorithm have successfully estimated the
location which is the mean x and y coordinates of all intersecting
points.

To further improve the accuracy, the mutual intersecting points
of all circles should not be treated the same as normal intersecting
points as shown in Figure 5. Therefore, a weight-based approached
has been adapted. This means that the mutual intersecting points
weigh more than normal intersecting points. The weight of the
mutual and normal intersecting point is set to 2 and 1 respectively.
Although the weight can be easily adjusted, 2:1 ratio leads to more
successful estimation and fewer outlier estimation as experimented
in section 5. However, an optimisation algorithm could be developed
to find the best weight ratio, but due to time constraint and working
alone, this was not feasible.

3.2.4 Filtering discovered beacons. All discovered beacons with
proximity to IoT device bigger than 10 metres were not taken into
account in the lateration algorithm because of the further the dis-
tance the more unreliable the RSSI signal. This reduces noises and
improve accuracy.

3.2.5 Last Estimated location. Last estimated location is used in
the localisation algorithm in interpolating the IoT device location
regardless of how many beacons are discovered in the data time
window. The algorithm retrieves the last estimated location and if
it is within the past 5 seconds at the time of localisation then, it
is treated as an individual beacon with radius equals to the time
elapsed in seconds multiply by 0.5. This assumes that the IoT device

4



moves at 0.5 metres per second. A more realistic speed could be
estimated using additional sensors such as an accelerometer to
measure speed.

3.2.6 Result Optimisation. The estimated location, P, is input
to an optimisation algorithm [17] that finds point X which reduces
the mean squared errors of the difference between each beacon’s
proximity to point P and their true distance to P (found using
Haversine method[12]). Given a point X, if X perfectly matches
with P, then X is P. If not, then X that minimises the error function is
the more accurate estimation than P. X is returned and is converted
back into geographic coordinates and saved on a Cloud with the
timestamp when the algorithm is run.

Note that in the code submitted, only the "*_experiment.py"
script contains this optimisation implemented because the Cloud
did not have the necessary packages installed.

4 VISUALISATION
2 visualisation tools have been developed to visualise the results of
the localisation algorithm.

4.1 An Android App for real-time visualisation
An Android app has been developed to visualise the results of the
localisation algorithm in real time. The app calls an API endpoint
in the Cloud which returns the geographic coordinates of the latest
location alongside the MAC addresses and proximity of discovered
beacons. As shown in Figure 6, the app uses Google Maps API to
visualise:

(1) the positions of beacons (Bluetooth icons).
(2) beacon’s proximity to IoT device (blue circles).
(3) the estimated location (red dot).
This app has mainly been used to manually calibrate the refer-

ence RSSI in section 3.1.2 and visualising the result from localisation
in almost real time (API calls have delays).

4.2 Cloud Visualisation Dashboard
ACloud visualisation dashboardwas developed usingHTML, JavaScript,
Google Maps API. When the index homepage is accessed, an API
endpoint which points to the batch processing script is called. The
results from the script are uploaded to the Cloud. The dashboard
retrieves the location estimations and plots them on Google Maps.
There are 4 visualisations:

4.2.1 The Home Page. The homepage shows all estimations
computed from the batch processing script on the Cloud as mark-
ers on the Google Map. Each marker has their title set to their
timestamp. This page also has 3 buttons to navigate to the other 3
visualisations.

4.2.2 Path Trace. Path trace plots the estimated locations se-
quentially one by one. When the next one is plotted, the previous
one is removed. This repeats until no more estimations are left. The
timestamp of the estimation is shown on the menu and speed can
be adjusted from the menu. This helps the author to visualise a live
journey of the estimated locations.

4.2.3 Path Reconstruction. Like path trace, path reconstruction
plots computed estimations sequentially for an adjustable time

Figure 6: Android App for real-time visualisation.

interval. Unlike path trace, the plotted markers will remain. This
visualisation assists in evaluating the accuracy of the path of the
moving IoT device.

4.2.4 Heatmap. This plots a heatmap of the estimated locations.
The denser an area is, the stronger the colour is. This visualisation
helps the author in evaluating areas on the map that are rarely the
result of the localisation algorithm.

5 PERFORMANCE EVALUATION
Location accuracy is the key performance indicator. The evaluation
is heavily focused on stationary points tests rather than continuous
moving path tests due to easier quantitative evaluation. During the
collection of the data in the path, the IoT device is facing up and is
around 1 metre above ground.

5.1 Stationary Test Set
In this test, shown in Figure 7, 15 evenly distributed points have
been selected on the floor map whose ground truth geographic
coordinate have been collected using [11]. The path started on point
0 and finished on point 14. Data is collected for 30 seconds at each
point and their starting and finishing timestamps are also recorded
as a reference for the evaluation scripts ("*_experiment.py").

For each test point, the number of successful location estimation
within the 30 seconds period is recorded. The mean distance error
of the estimated location to the true location has been calculated
using the Haversine method [12]. Then, the overall accuracy is
calculated.

5



Figure 7: Stationary points test set.

The parameters of the localisation algorithm have been experi-
mented to maximise the following in order of importance:

(1) overall accuracy.
(2) number of successful estimation.
(3) individual test point accuracy.

5.2 Test Results
After some experimentation of the adjustable parameters, the data
time window is set to 4.5s, the algorithm time interval is set to
3s (there should be a maximum of around 10 estimations per test
points). The results are displayed in Table 2.

As clearly shown in Figure 8, the localisation algorithm is heav-
ily dependent on the Bluetooth signals from the beacons and the
estimated location from the algorithm is limited to the blue lines.
This could be solved by adding additional Bluetooth beacons. In-
puts from additional sensors would also improve accuracy at places
where Bluetooth signals are not available. However, due to time
constraint and working alone, this was not feasible.

Table 2: Test result for each test point.

Test Point Number of Estimations Mean Distance Error (metres)

0 8 3.1570353838851464
1 5 1.0454290095323688
2 6 3.867109226134572
3 3 4.209911370221693
4 6 2.550590978083412
5 6 4.659396844781046
6 3 2.641241776631099
7 10 5.735763376893904
8 6 3.553800402363198
9 7 5.096912579179528
10 11 3.244255123105696
11 9 2.6440261327014656
12 8 1.3556790824841536
13 4 2.233608023472335
14 6 4.753636728148626

Figure 8: Visualisation of the test result.

The localisation algorithm on average provides an accuracy of
3.38 metres. The results of the test points provide 1 to 6 metres accu-
racy depending on environmental factors such as walls, furnitures,
and distribution of the Bluetooth beacons.

6 CONCLUSIONS
The feasibility of the indoor localisation prototype in real world ap-
plications depends on its localisation accuracy. Although Bluetooth
signals were attenuated due to environmental factors, a localisation
accuracy of 3.38 metres proves to be useful in some business sce-
narios. For example, proximity-based advertising in shopping malls
where stores are far apart (around 5 to 20 metres) or category ad-
vertising (for example, meat and beverage section) in supermarket
are feasible.

A weakness of an indoor localisation system that solely relies on
Bluetooth signals is that the estimated localisations are limited to
areas covered by Bluetooth beacons. This problem could be solved
by adding more equally distributed beacons which are cost-effective
and highly scalable.

Parameters for the algorithm such as data time window and
algorithm time interval have been optimised for stationary points,
so these parameters should also be experimented to find the optimal
parameters for continuous moving paths.

7 FUTURE SCOPE
Additional sensors could be added to improve accuracy andmitigate
the localisation algorithm’s dependency on Bluetooth signals. A
better filter to remove noises from RSSI signals than outlier removal
would be Kalman Filter.

Optimisation algorithms could be developed to find the optimal
reference RSSI and weights for the mutual and normal intersecting
points to maximise accuracy. Encryption algorithm could also be
used to make data more secure and avoid data breach.

Combining location data with users’ shopping profiles will en-
able more accurate and timely advertisements for items nearby,
as well as informing users of any coupons they may have to use.
Further, gathering the individual paths of the customers will help
in designing mall and store layout and future campaigns.

6



REFERENCES
[1] Wouter Bulten. 2015. Kalman filters explained: Removing noise

from RSSI signals. https://www.wouterbulten.nl/blog/tech/
kalman-filters-explained-removing-noise-from-rssi-signals/

[2] Android Developer. 2018. Volley Overview. https://developer.android.com/
training/volley/

[3] Google Developer. 2017. Android BluetoothLeGatt Sample. https://github.com/
googlesamples/android-BluetoothLeGatt

[4] Qian Dong and Waltenegus Dargie. 2012. Evaluation of the reliability of RSSI for
indoor localization. In Wireless Communications in Unusual and Confined Areas
(ICWCUCA), 2012 International Conference on. IEEE, 1–6.

[5] Punit Jajodia. 2018. RemovingOutliers Using StandardDeviation in Python. https:
//www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.
html

[6] MartinBL. 2016. Bluetooth low energy Characteristics, a beginner’s tuto-
rial. https://devzone.nordicsemi.com/tutorials/b/bluetooth-low-energy/posts/
ble-characteristics-a-beginners-tutorial

[7] Frederic P Miller, Agnes F Vandome, and John McBrewster. 2009. Advanced
encryption standard. (2009).

[8] Arm Mbed OS. 2015. BLE GATT Example. https://os.mbed.com/teams/
Bluetooth-Low-Energy/code/BLE_GATT_Example/

[9] Arm Mbed OS. 2016. BLE LED Blinker. https://os.mbed.com/teams/
mbed-os-examples/code/mbed-os-example-ble-LEDBlinker/

[10] Onkar Pathak, Pratik Palaskar, Rajesh Palkar, and Mayur Tawari. 2014. Wi-Fi
Indoor Positioning System Based on RSSI Measurements from Wi-Fi Access
PointsâĂŤA Trilateration Approach. International Journal of Scientific & Engi-
neering Research 5, 4 (2014), 1234.

[11] Valentin Radu. 2018. LSR DataCollection. https://github.com/vradu10/LSR_
DataCollection

[12] C Carl Robusto. 1957. The cosine-haversine formula. The American Mathematical
Monthly 64, 1 (1957), 38–40.

[13] Bluetooth SIG. 2018. Generic Attributes (GATT) Specifications. https://www.
bluetooth.com/specifications/gatt

[14] Tom Spink. 2017. InfCloud. http://glenlivet.inf.ed.ac.uk:8080
[15] Jie Yang and Yingying Chen. 2009. Indoor localization using improved rss-based

lateration methods. In Global Telecommunications Conference, 2009. GLOBECOM
2009. IEEE. IEEE, 1–6.

[16] Jay Ying. 2015. The python version implementation for trilateration algorithm.
https://github.com/noomrevlis/trilateration

[17] Alan Zucconi. 2017. Positioning and Trilateration - Optimisation Algorithm.
https://www.alanzucconi.com/2017/03/13/positioning-and-trilateration/#part3

7

https://www.wouterbulten.nl/blog/tech/kalman-filters-explained-removing-noise-from-rssi-signals/
https://www.wouterbulten.nl/blog/tech/kalman-filters-explained-removing-noise-from-rssi-signals/
https://developer.android.com/training/volley/
https://developer.android.com/training/volley/
https://github.com/googlesamples/android-BluetoothLeGatt
https://github.com/googlesamples/android-BluetoothLeGatt
https://www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.html
https://www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.html
https://www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.html
https://devzone.nordicsemi.com/tutorials/b/bluetooth-low-energy/posts/ble-characteristics-a-beginners-tutorial
https://devzone.nordicsemi.com/tutorials/b/bluetooth-low-energy/posts/ble-characteristics-a-beginners-tutorial
https://os.mbed.com/teams/Bluetooth-Low-Energy/code/BLE_GATT_Example/
https://os.mbed.com/teams/Bluetooth-Low-Energy/code/BLE_GATT_Example/
https://os.mbed.com/teams/mbed-os-examples/code/mbed-os-example-ble-LEDBlinker/
https://os.mbed.com/teams/mbed-os-examples/code/mbed-os-example-ble-LEDBlinker/
https://github.com/vradu10/LSR_DataCollection
https://github.com/vradu10/LSR_DataCollection
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt
http://glenlivet.inf.ed.ac.uk:8080
https://github.com/noomrevlis/trilateration
https://www.alanzucconi.com/2017/03/13/positioning-and-trilateration/#part3

	Abstract
	1 Introduction
	2 Data Collection and Cloud Storage
	2.1 Firmware
	2.2 Gateway Communication
	2.3 Cloud Storage

	3 The Localisation Algorithm
	3.1 Proximity to beacons
	3.2 The Algorithm

	4 Visualisation
	4.1 An Android App for real-time visualisation
	4.2 Cloud Visualisation Dashboard

	5 Performance Evaluation
	5.1 Stationary Test Set
	5.2 Test Results

	6 Conclusions
	7 Future Scope
	References

