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1 Introduction 
RoboTour is a robotic tour guide that assists people in environments such as museums or art galleries.                                 
The system comprises an autonomous robotic guide, a purpose-built Android application, and a web                           
server mediating the communication between the two. RoboTour can be controlled by up to two Android                               
devices, and the tour may be followed by many more devices. The app allows users to interact with                                   
RoboTour intuitively in multiple languages.  

2 Components 
2.1 Robot Hardware Components 

Fig. 1: Labelled view of RoboTour 

 Table 1: Robot Components 

Quantity   Item 

2  HC-SR04 Ultrasonic Sensors 
 

1  LEGO Ultrasonic Sensor 

2  LEGO colour Sensors 

1  Custom Line Sensor 

1  Motorised Pointer 

2  Drive Wheels 

1  Arduino Sensor Hub 

1  Lego EV3  

 

The robot (See Fig. 1) is a differential drive platform, i.e. the movement is achieved with two motorised                                   
drive wheels. Varying the rotational speed of the wheels independently, allowed us to introduce rotation                             
of the chassis in addition to the linear translation. Additionally, two rear wheels are added for stability                                 
and weight support. They were designed with the aim of minimising the friction and disturbance to the                                 
robot control. 
 
The differential drive platform was chosen due to the mechanical simplicity and intuitive control. Using                             
two motors means that the robot can exercise control over only two degrees of freedom out of three on                                     
the plane. This means it lacks the ability to move in any direction besides the one it is facing. However,                                       
the envisioned primary mode of operation (following predetermined paths) can be fulfilled without this                           
kind of movement. 
 
The chassis of the robot was designed to be rigid and compact. Rigidness eliminates additional variables                               
and random disturbances (e.g. occasional misalignment of the wheels due to load). The small size of the                                 
robot was essential in accomplishing obstacle avoidance in the small test area. 
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The robot also features a motorised pointer which is used during tour-guiding to engage users and                               
provide a visual hint about the location of the painting. The pointer is driven by a worm gear, whose                                     
self-locking properties prevent the pointer from being accidentally misaligned. The pointer is mounted                         
above the other components of the robot so that it is visible to the users. It rotates in the plane parallel                                         
to the floor. 
 
The sensor suite of the robot includes three ultrasonic sensors for obstacle detection and avoidance, two                               
LEGO colour sensors for detection of markings on the floor, and a custom line sensor to track the lines                                     
used for navigation. All three ultrasonic sensors were placed low above the ground, as the initial tests                                 
indicated that some obstacles (e.g. human shoes) are better detected with such placement of the                             
sensors. Additionally, since both the LEGO colour sensors and the custom line sensor operate by                             
detecting the intensity of the light reflected from the floor, their precise placement was crucial to the                                 
reliability of the robot. The mounting of the sensors allows for precise adjustments of the distance to the                                   
ground. 
 
As the required number of sensors exceeds the capabilities of the stock EV3 set, we decided to use an                                     
Arduino board as a sensor hub, which allowed us to connect the HC-SR04 sonars as well as the custom                                     
sensor (see Fig. 2). 

 
Fig. 2: Sensor Expansion Schematic 

2.1.1 Sensors 
Table 2: Sensor Specifications 

Sensor  Principle of operation  Returned value  Purpose 
LEGO 
Ultrasonic 
Sensor 

Time-of-flight distance measurement  0-2550 [mm]  Obstacle detection 

HC-SR04 
Ultrasonic 
sensor 

Time-of-flight distance measurement  0-2550 [mm]  Obstacle avoidance 

LEGO Colour 
sensor 

Colour detection based on RGB values 
of light reflected from the object 

0-7 (Colour code)  Branch markers 
detection 

Custom line 
sensor 

Line position based on 6 line detectors 
(infrared reflectance transducers) 

10-60 (Line centre position) 
6xBool (detector activation) 

Line following 
Branch detection 

Drive wheel 
tachometers 

Rotation measurement based on 
In-built quadrature encoder 

Signed Integer [deg] (motor 
rotation) 

Odometry 

Pointer 
tachometer 

Rotation measurement based on 
In-built quadrature encoder 

Signed Integer [deg] (motor 
rotation) 

Pointing to art 
pieces 
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2.1.2 Sensor Hub 
The sensor hub is an Arduino Uno board with a custom shield featuring ultrasonic sensor connectors as 
well as access to the I2C bus. The hub is responsible for three functions: 

● Communication with the custom sensor 
● Processing of the signals from the side sensors 
● Communication with the EV3 

 
The firmware is written in ArduC, using standard Arduino libraries. The communication with the custom                             
sensor takes place over I2C with the Arduino operating in master mode. In each loop, the hub requests 6                                     
bytes (one per each detector) from the line sensor and updates its inner buffer. The HC-SR04 ultrasonic                                 
sensors are handled using a NewPing Library. The sensor routine measures the time it takes for an                                 
ultrasonic wave to reach the obstacle and bounce back. The time is then used to calculate distance, and                                   
the result is stored in the buffer. 
 
The communication with the EV3 happens over UART (serial port). UART was chosen over I2C due to its                                   
ease of access to the serial compared to I2C and because it frees a USB port on the EV3. The EV3 can                                           
send a request (a single byte message) to the Arduino, which responds by transmitting the cached                               
sensors readings. Initially (V1.0), the data was transmitted in a frame formed with ASCII characters and                               
parsed by the EV3. This, however, resulted in a polling rate too low for reliable and smooth operation. In                                     
the next version (V2.0) we opted for transmitting the values in pure numerical form (i.e. each byte stored                                   
the binary value of the corresponding sensor). This resulted in a reduction of polling time by a factor of 3.                                       
Further refinement (V2.1) involved reducing debugging and diagnostic features on the EV3 side, resulting                           
in another decrease in polling time (See Fig. 3).  

 
Fig. 3: Polling time distribution 

2.1.2 Custom Sensor 
The custom sensor was designed to meet the following objectives: 

● High tracking range - the stock LEGO colour sensor allows for line following by tracking the edge                                 
of the line. This, however, means that there is approximately a 10mm region in which the sensor                                 
readings show useful variation. This makes it necessary to make sharp corrections to stay in that                               
region. Expanding it makes the robot more resilient to small disturbances and appear more                           
natural. 

● High effective resolution - by using two LEGO sensors far apart it is possible to extend the tracking                                   
range. However, the region between them is “dead” (no meaningful readings are made). It is                             
important that the value changes gradually so that more sophisticated control can be                         
implemented resulting in smoother operation. 
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● High polling rate - a high refresh rate allows the robot to run the control loop at higher                                   
frequencies and react quickly enough even at higher speeds. It also ensures that the branches are                               
not missed. 

● Differentiation between sides - in a case when there is no line detected, it should be possible to 
determine where to look for the line. This way the penalty for overshooting the line is minimised. 

 
To achieve these goals, the sensor was designed as an array of 6 QRE1113 infrared reflective sensors                                 
connected to an ATMega88A microcontroller. Each sensor is an IR LED and phototransistor in a single                               
package. The output voltage depends on the amount of light that reaches the phototransistor after                             
reflecting from the surface - dark surfaces absorb light resulting in high readings, while bright surfaces                               
reflect light resulting in low readings. 
 
The firmware for the ATMega88A was written in C using AVR Toolchain (Microchip, 2017). The                             
microcontroller uses an Analogue to Digital Converter (ADC) to convert the voltage level to an 8-bit                               
number for further processing. The readings are taken and cached continuously using an                         
interrupt-driven method to maximise the reading rate. The sensor joins the I2C bus as a slave - on the                                     
address match, the sensor begins the transmission of the cached sensor readings. Additionally, a single                             
LED is added as a status indicator. 
 
The sensor schematic and PCB were designed using Autodesk Eagle. The two-sided board was                           
CNC-milled and populated and soldered by hand. A housing compatible with LEGO was designed in                             
Autodesk Inventor and 3D printed on Ultimaker3 available in UCreate Studio for easy integration with the                               
robot. The final version of the complete sensor can be seen in Fig. 4a & 4b. 
 
The EV3 receives raw data - six digitised analogue readings. To account for variances between parts and                                 
external conditions (such as light in the room or tape degradation), each run of the robot should begin                                   
with the calibration of the sensor. While rotating around its axis, the robot records minimum and                               
maximum readings for each of the six detectors separately. Then thresholds are calculated which are                             
used to determine whether a given detector is over the line (i.e. is activated). Each of the detectors is                                     
assigned a position value (see Fig. 4b). The position of the line (sensor output value) is calculated as an                                     
average position value of all activated detectors.  
 

 

Fig. 4a: Top view of the custom sensor in the 
3D-printed housing 

Fig. 4b: Bottom view of the Custom sensor with 
the position values indicated above the detectors 
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2.2 Robot Software Components 

2.2.1 Programming Language  
The main computing node of the robot is the LEGO EV3 running an ev3dev system. 
The system provides easy and robust access to the hardware with some high-level functions. There are                               
some available bindings, including ones in Java, Python or C. We opted for Python due to a number of its                                       
features: 
 

● Clarity of the code and self-documentation. 
● Easy development and deployment due to interpreted nature of the language. 
● Availability of easy-to-use modules such as Threading or Serial. 
● Flexibility in using elements of Object-Oriented, Functional and Procedural programming. 

 
While the performance of the code could be increased by using C, the need to cross-compile the code                                   
would make the deployment more complex and less intuitive, while requiring additional support                         
infrastructure (such as setting up the proper toolchain). 
 
Alternative computing platforms were considered (e.g. Raspberry Pi 3). However, the EV3 platform had                           
the advantage of providing a well-functioning native hardware interface including sensor drivers and                         
motor controllers supporting closed-loop position and speed control. Gains from the additional                       
computing power would not outweigh the need to research and develop analogous solutions for the                             
different platforms.  

2.2.2 Robot program architecture 
We developed a Finite State Machine-based framework that the main program was based on. It was                               
designed to provide some abstractions to separate different aspects of the robot operation. 
 
In each loop of the main program, all sensor readings are performed and stored in an Environment                                 
object, so that the values are consistent across the entire loop. Then, the FSM makes transitions based on                                   
the current state of the environment if necessary. Finally, a dispatcher object is used to execute an action                                   
or a single step of an algorithm associated with the current state of the FSM. This design follows the                                     
“sense-plan-act” principle. 
 
Finite state machines were used, as it seems natural to think of the robot as being in different modes, or                                       
states, and behaving appropriately to that mode/state (e.g. line-following mode, obstacle avoidance                       
mode). Additionally, the FSM approach allows separating the program flow control from the algorithms                           
themselves. In turn, this simplifies adding additional sensor processing or modifying control logic, as they                             
are separated from one another and seemingly run concurrently (e.g. even if the robot waits, it still                                 
updates the sensor readings). The flow of the main loop can be seen in Fig. 5a while the simplified state                                       
diagram is presented in Fig. 5b. The additional strength of the FSM approach is the ability to apply it at                                       
the different levels of abstraction, i.e. each algorithm can also be run by an FSM, while being triggered by                                     
the master FSM. 
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Fig. 5a: Robot Control Structure  Fig. 5b: Simplified Master FSM Diagram 

 

2.2.3 Line Following 
Some of RoboTour’s essential features are reliable position estimation and navigation. To achieve this,                           
many different alternatives were considered, such as: 

● RFID tags at important locations - which would be detected by RoboTour as it moved around                               
the museum. This option would have been cheap, but RFID tags have a very limited range, only tell                                   
an approximate position, and do not provide the orientation of the robot. 

● Overhead camera - very effective for estimating the robot’s position, orientation and finding the                           
optimal path around obstacles. However, in real museums the cost of installation of multiple                           
high-quality cameras on the ceiling could be very difficult as some buildings are listed and                             
modifying them to implement such a solution would introduce risks and complications. In the end,                             
we dropped this idea due to not being convinced we would successfully implement it in the given                                 
time frame and skillset of the group - especially as we knew we would possibly be a member                                   
down for a while, which turned out to be the entire semester. Thus looking back at this, we                                   
believe this decision was correct considering our circumstances. 

● Odometry - unreliable as any error that occurs during a tour accumulates over time, giving large                               
mismatches between estimated and actual positions. 

 
In the end, a decision was made to go with line following (with short lines placed perpendicularly to the                                     
path to indicate branches and paintings), as we already had the tools (LEGO colour sensor/light                             
reflectance sensors) and experience implementing such a solution. This idea was also attractive because                           
a properly done line following robot always sticks to a carefully pre-laid path and does not need to do                                     
heavy computations by itself. 
 
The line following is done using a Proportional-Integral-Derivative Controller (PID). The main benefit of                           
using PID instead of other simpler approaches is reliability and reduced shakiness when following the                             
line. To help better illustrate the reason for our chosen algorithm, Fig. 6a and 6b illustrate how the PID                                     
controller compares with a boolean line follower. 
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Fig. 6a: Line Following Without PID  Fig. 6b: Line Following With PID 

The workings of PID 
The following paragraphs explain each of the three parts of the PID algorithm. 

The proportional part is responsible for turning the robot at a speed proportional to the error between                                 
the target (expected) value and custom line sensor readings. This is a basic driving force, which makes                                 
the robot turn faster as the error gets bigger. 

The integral part sums up an error from the past loops of the program and reduces or strengthens the                                     
turning rate proportionally to the size and sign of the error history. This allows the robot to correct its                                     
movement faster when following curvy parts of the line. 
 
The derivative part takes the current turning rate, multiplies it by a certain constant and applies it as an                                     
input to the motors. This is done to dampen the oscillations which can arise when using a PI controller.                                     
The reduced wiggliness helps the robot reach its equilibrium position and follow the line smoothly. 

2.2.4 Environment 

The museum environment is       
imported into the robot as a graph             
implementation method, and this       
consists of 3 hash maps. 
 
The first map is a dictionary that             
represents the distance between       
each neighbouring vertices (branch or         
painting). This is used to calculate the             
shortest path to the closest painting           
using Dijkstra’s algorithm. 
 
A second map is a dictionary which             
consists of vertices (branch or         
painting) and the orientation of its           
neighbouring vertices. This is used for           
aligning the robot with the desired           
direction and follow the line to the             
desired branch. 
 
The third map represents the         
position of the paintings in the map.             
This is used for deciding where the             
pointer should turn to point to the             
desired painting. 

 

Fig. 7: Map of the Museum Environment 

7 
 



 
   
2.2.5 Route Planning Algorithm 
Once the robot has received the paintings selected by the user, the best route is planned. The map of the                                       
museum (Fig. 7) is imported as a graph (using a python dictionary) with vertices representing branches or                                 
paintings and with edges representing the action required to move to the neighbouring vertex. The graph                               
implementation method enables Dijkstra’s algorithm (Skiena, 1990) to find the closest painting in the                           
graph (using the distance cost function).  
 
We decided to represent the environment as a graph, as it enables us to use some of the most common                                       
path finding algorithms. Alternatives to Dijkstra’s graph search algorithms were considered such as A*                           
search algorithm and the Viterbi algorithm, which are faster than Dijkstra’s algorithm when there are a                               
large number of vertices. However, they require a more complex implementation, and because in our                             
prototype there is a very small amount of vertices the speed difference would’ve been negligible, so we                                 
chose Dijkstra. Furthermore, we found existing solutions for Dijkstra’s algorithm, and we tailored it to suit                               
our graph implementation of the map (Gilles-bertrand.com, 2018). 
 
Dijkstra’s algorithm is run with the robot’s position and the selected stack of paintings (For example,                               
Painting A, and Painting B). The closest painting (Painting A) in the stack and its path (an ordered list of                                       
branches or paintings) to reach it are returned. Then the robot aligns itself to the desired direction and                                   
line following is executed. When the path is finished, Painting A is removed from the stack, and robot’s                                   
position is updated to Painting A so that Dijkstra’s algorithm can be run with the new position and the                                     
stack to find the next closest painting (Painting B). This repeats until the stack is empty. Then the order of                                       
the paintings is uploaded to the server so that the Android app can update its UI. 

2.2.6 Obstacle Avoidance Algorithm 
Considering the line may be blocked, we have implemented obstacle avoidance to prevent wasting the 
user’s time from waiting for the obstacle to be removed. 
The front LEGO ultrasonic sensor is used to detect the obstacles. If there is an object within 20cm of the                                       
front of the robot, it is considered an obstacle and the robot will halt its movement and attempt obstacle                                     
avoidance. 

2.2.7 Wall Following Mode 
Considering the obstacle may have various sharp edges, one of the best ideas for the robot to avoid the                                     
obstacle is to keep a constant distance from the obstacle and move along the sharp edge. This is shown                                     
in Fig. 8a.  

   

Fig. 8a: Obstacle Avoidance  Fig. 8b: Black Line Detected  

When an obstacle is detected, the robot will turn 90 degrees in the direction that is pre-programmed in                                   
the dictionary (See 2.2.4). The two HC-SR04 ultrasonic sensor at the side are used to detect the distance                                   
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to the obstacle. The robot will keep the distance at 11 centimetres, by adjusting itself based on the                                   
distance it detected at the side ultrasonic sensor. When the white line is detected by the custom line                                   
sensor, the robot will turn 90 degrees again and go back to line following mode. 
 
Note: If there is not enough space for the robot to pass through, it will stop and notify  
the user in the app in their selected language.  

2.2.8 Obstacle on Branch  
As the robot counts branches to understand where it is in the environment, when an obstacle is on a                                     
branch, the robot may miss the branch during the obstacle avoidance, which will make it lose its place.                                   
Black lines have been introduced at the branch to solve this issue. The two LEGO colour sensors are used                                     
to detect the colour of the tapes. In obstacle avoidance mode, if the black line is discovered - when the                                       
LEGO sensors give a reading of 1 - the robot knows it has missed a branch (Fig. 8b). If the branch is a                                             
painting it needs to go to, it will turn and wait in front of the obstacle until the obstacle is removed.                                         
Otherwise it will continue obstacle avoidance and count for a branch.   

2.2.9 Indicating Paintings 
The pointer is used to indicate the position of the paintings. Painting position at each branch is                                 
pre-programed into the code. When the robot arrives at the painting, based on its position and                               
orientation, it can calculate how many degrees the pointer should turn to indicate the painting. When the                                 
user presses “continue” on the app the robot will return the pointer to the default position and start                                   
navigating to the next painting.  

2.3 Server Communication 
The communication between the EV3 and all Android phones are done via a server hosting a PHP file.                                   
The reason for choosing this over other mediums - such as a direct Bluetooth connection - is due to the                                       
limitations of direct Bluetooth connection with an Android phone. We found that a direct Bluetooth                             
connection is not as reliable, and also that it limits it to one device to be connected to the EV3, making                                         
multi phone support not feasible. Due to these reasons, we decided to go for a server to mediate                                   
messages between the Android apps and EV3. 
 
The EV3 connects to the server via the internet. It gets an internet connection from Bluetooth tethering.                                 
The reason we chose this over WiFI with a dongle is due to the unreliability of the conman WiFi driver. We                                         
discovered that once the WiFi driver was set up, the connection speed nearly doubled compared to                               
Bluetooth Tethering. However, the WiFi would disconnect intermittently despite all necessary certificates                       
being installed due to the conman WiFi driver. We decided reliability was more important for our use                                 
case hence we chose Bluetooth tethering. 

2.4 App  
According to The Verge, 81.7% of smartphones in the market are running Android in 2016 (The Verge,                                 
2018). This is why an Android app was developed to be the user interface for the user to communicate                                     
with the robot. We believed that due to the time restrictions, we should focus on developing a prototype                                   
for only one platform. 

2.4.1 App Development 
We have made the app backwards compatible with older versions of Android; the app will work with                                 
Android SDK version 17 onwards (users also require 20mb free space and an internet connection to                               
download and use it). The app was developed in Android Studio 3.1 using Kotlin. We choose to develop in                                     
Kotlin instead of the more common Java as we had experience in Android development using Kotlin and                                 
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the null safety that Kotlin provides as standard ensures the app can be made more robust with less effort                                     
as compared to Java. Kotlin also ensured the app has approximately 20% less code than that would be                                   
required with Java, making the app easier to debug and adapt. 

2.4.2 User Interface 

     

       Fig. 9a: MainActivity.kt  Fig. 9b: SelectLanguageActivity.kt       Fig. 9c: WaitingActivity.kt 

     

Fig. 9d: SelectPicturesActivity.kt  Fig. 9e: ControllerActivity.kt  Fig. 9f: FollowerActivity.kt 
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Fig. 10: UML Activity Diagram of Kotlin Classes for the 
App 

The code on the app is divided into the                 
classes pictured in Fig. 10. Upon opening the               
app, MainActivity (Fig. 9a) is started. When the               
user presses the “Start” button, they will be               
taken to the SelectLanguageActivity (Fig. 9b). 
 
Once the user has selected their language,             
they will be taken to WaitingActivity (Fig. 9c),               
this activity will check the server to see if a                   
robot is available. If one is available, they will                 
be allowed to select pictures in the             
SelectPicturesActivity (Fig. 9d). Once the user           
has selected the pictures, they wished to go to                 
and pressed the “Start Tour” button they will               
be taken to ControllerActivity (Fig. 9e). 
 
If no robots are available, the user will be                 
allowed to follow an existing tour in the               
FollowerActivity (Fig. 9f).  
 
 
Most classes are self-contained as their users             
interfaces are relatively static. However, the           
SelectPicturesActivity requires an adapter and         
custom view as the UI needs to update when                 
the user selects an item from the list and                 
when the user queries the array of paintings. 
 
The User Interface was made using Anko             
(Anko, 2018). We chose to develop the UI               
using Anko because it is faster, requires less               
code, and is more readable than using             
traditional XML layouts. 

2.4.3 Single Controller Mode 
Single controller mode allows for a controller (Fig. 9e) and a potentially unlimited number of followers                               
(Fig. 9f). A controller chooses the paintings the robot will go to and can cancel and skip paintings, send                                     
the robot to the toilet and exit, change the robot’s speed, and stop the robot. Followers can follow the                                     
tour although they do not influence the robot or the paintings the robot will be stopping at, they are free                                       
to leave the tour and join the tour as they wish, and they can also see the descriptions and etas for                                         
upcoming paintings. We allowed for unlimited followers as on peak days in museums; there may not be                                 
enough robots available, hence to better utilise resources, users can follow an existing tour (in their                               
language).  

2.4.4 Dual Controller mode 
Dual Controller mode works the same as Single Controller mode, but there are two controllers. We                               
allowed for this option so that two people could select the paintings they wish to on their device, and                                     
then the robot would go to the union of the paintings they selected. 
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2.4.5 Speech-to-Text 
Speech-To-Text is used to allow the user to communicate with the app by searching for paintings and                                 
asking for recommendations in the SelectPaintingsActivity.kt. Speech-to-Text API (Google Cloud Speech                     
API, 2018) was used to parse what the user says and obtain the top 10 things that the API thinks was said.                                           
The app then pattern matches to see if any key word matches any of the words the API thinks was said.                                         
Key words are any of the unique words in the paintings, the artist or some translation of “new”, “best”,                                     
“recommend”, or “popular”. If there’s a match, then the painting or a subset of the paintings is displayed                                   
in Fig. 9d, otherwise the user will be notified using a toast and text-to-speech.   

2.4.6 Text-to-Speech 
Google’s Text-To-Speech API (Cloud Text-to-Speech API, 2018) was used to read out the descriptions of                             
art pieces when the user arrives at the artwork or on demand. The purpose of this is to allow for users                                         
who may have difficulty reading the ability to hear about the art pieces. We decided to use the Google                                     
text-to-speech API as we found that it worked very reliably on Android devices, and it allows for the                                   
dialect to be changed programmatically, so the speech sounds natural no matter what language the user                               
selected. Another reason is due to the popularity of Google’s Text-To-Speech, users are more likely to be                                 
familiar with the voice and find it easier to understand.  

2.5 System Structure 
Fig. 11 gives an overview of how the app, server, and robot communicate with each other, and their 
software components. 

 

Fig. 11: System Structure 
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4 Software Testing 
We have considered a thorough quantitative testing plan using both functional and non-functional 
testing, and the results were recorded. The tests combined a balanced set of tests carried out by guest 
users and team members. 

4.1 Integration  
To ensure integration went smoothly, before development we established our basic functional                       
requirements of each component to ensure that we all are aware of what needed to be created and the                                     
specification. When it came to integration at least one person who contribute to each subsection was                               
present, ensuring that it went smoothly. Once integration was finished, testing was done to ensure no                               
errors were created during the integration process and that the tests that previously passed still pass. If                                 
new features were introduced - such as notifying the user on the android device when an obstacle is                                   
encountered - we ensured that regression testing using existing tests took place to ensure that we did                                 
not introduce bugs or negative side effects. 

4.2 Software Reliability Testing 

We have done software reliability testing of the individual components of the robot (Fig. 12b and Fig. 12c)                                   
and the Android app (Fig. 12a and Fig. 12d). These tests were done to ensure that the individual                                   
components met the requirement. 

Fig. 12a: Software Reliability on the User Interface  Fig. 12b: Software Reliability on Obstacle Avoidance 

 

Fig. 12c: Software Reliability on Route Planning  Fig. 12d: Software Reliability on Speech-to-Text 

13 
 



 
   
4.3 Integration Testing 

After testing the individual components, we combined them and had 20 trial runs of the entire robot 
system with different paintings selected (Fig. 13a) and the server communication with the app and robot 
(Fig. 13b). This is to ensure the individual components worked as a whole. 
 

   

Fig. 13a: Integration Test for the Robot  Fig. 13b: Robot-to-Server and App-to-Server 
testing 

4.4 Full System Testing 
After testing individual components and 
integration tests, we ran tests on the whole 
system from the start of a user story with different 
modes (Fig. 14).  
 

 

 

 
   
                                                                                                                Fig. 14: Full System Testing 

4.5 Usability Testing 
We conducted usability tests with the app by giving users the app and seeing if it is intuitive without any                                       
explanation. We took this feedback to reevaluate the user interface to be more intuitive as per the                                 
feedback from the sample users. Some examples of user feedback that was implemented is asking the                               
user if they are sure when exiting the app, so they do not exit accidentally and text-to-speech                                 
notifications when they arrive at the exit and toilet.   

 

4.6 Compatibility testing (Android versions and phone versions and tablets) 
The android app has been developed to run on Android SDK version 17 or above. We tested on different 
brands of Android phones and tablets to ensure that the app is displayed correctly and functionality is 
maintained.  
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5 Reflections 

5.1 Noteworthy Strengths and Weaknesses of the Final System 
Strengths: 

● Effective navigation - efficient route-planning and line-following using the custom line sensor                       
contributed to smooth and relatively quick navigation around the mock museum. Once working,                         
the robot seemed to perform very reliably and in a way useful to users. 

● Intuitive interface - throughout the project, we had been taking feedback from other people and                             
constantly improving the user experience. The resulting application has an effective interface that                         
provides good access to our system’s features. 

● Custom line sensor - this feature differentiates our team from many another line following                           
robots. It increases the maximum speed possible with Lego sensors by at least 150% and has                               
much smoother line following. 

Weaknesses: 
● Suboptimal communication protocol - in the final implementation the updates were relayed by                         

constantly polling the server, which was quite taxing on the infrastructure and could even trigger                             
safety mechanisms on the available hosting solutions (see section 5.2). 

● Limited obstacle avoidance - the obstacle avoidance system worked well, but only in a narrow                             
range of possible problems. There are some situations that the system cannot cope with - e.g.                               
obstacle avoiding between two obstacles. However, solving these would have been very                       
challenging with the resources at our disposal. 

● Inflexible navigation - the implemented solution proved to work very satisfactorily. However, it                         
requires physical modification of the working environment and as such could not be as easily                             
deployed in different locations. 

5.2 If We Could Start Over 
None of the members of the group knew how to use PHP or had any server experience, and so when we                                         
made the PHP script that ran on the server (see section 3.3), it would simply send and display a string of                                         
POST requests on a webpage. This meant that both the EV3 and the App would need to poll the server                                       
about 60 times a minute for the user to have a smooth experience. None of us realised that it would                                       
cause quite a strain on the server. We realised this too late, and we didn’t have enough time to redo the                                         
server and the communication code on the EV3 and Android side, hence, we just had to make do as the                                       
code was working. This wasn’t so bad when we only had one app, but as soon as we added multiple                                       
phones, the problem became more apparent. The constant polling was also quite straining on the app                               
where we had threads constantly running in the background. If we were to do the project again, we                                   
would have learnt how to do a server the way it was intended by utilising a messaging protocol such as                                       
MQTT. This would’ve meant a more reliable web server, less logic in the background of the app making it                                     
easier to debug, and possibly a better usage of our time.  

5.3 Performance On Final Demos 

5.3.1 Final Client Demo 
On the day the robot worked well. Although we had two minor oversights with the app - in follower mode                                       
the speech was overlapping, and the text was missing from the current picture. These minor issues were                                 
fixed straight after the client demo, and the application was tested more thoroughly. Hence they did not                                 
reoccur in the investor demo and the app performed as expected.  
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5.3.2 Investor Demo 
On the day of the final demo, the robot incorrectly detected a branch on a curve. An investigation                                   
indicated that the branch detection algorithm was tuned to a different environment (with higher                           
background-to-line contrast) and so gave a false positive in this case. Other than this, we felt the demo                                   
went smoothly, and the robot worked as intended.  
 
The investors seemed to think RoboTour was a viable solution to an acknowledged problem; we received                               
a lot of positive feedback regarding the idea of the robot. It seemed like the visitors could relate to the                                       
problems in accessing the museums’ resources fully and appreciated our approach to solving it. 
 
We won the technical innovation runner-up prize - Sponsored by Robotical. The judges seemed to be 
very impressed with the smoothness of the custom line sensor and how it improved the robot.  

5.3.3 Visitors at the Stand  
During the trade fair, we had a significant amount of traffic at our stand. This was partially due to our                                       
robot navigating around a miniature track all day after our demo. The purpose of this mini demo area on                                     
our stand was to allow the judges who did not have an opportunity to view our pitch to see the robot in                                           
action. We found that a robot navigating on top of the table attracted a lot of interest from the general                                       
public and fellow peers. We received a lot of positive feedback about the robot, custom sensor and                                 
Android app and most seemed to have experienced the problems in museums which RoboTour has been                               
designed to solve.  
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